Конструкция стартеров


Конструктивно электростартер объединяет в себе электродвигатель и механизм привода с электромагнитным тяговым реле, муфтой свободного хода и шестерней понижающего редуктора. В стартер автомобиля может быть встроен дополнительный редуктор, если передаточное число от шестерни привода к венцу маховика недостаточно. Электростартеры классифицируют по способу возбуждения электродвигателя (последовательного, смешанного, с возбуждением от постоянных магнитов), типу привода, способу крепления на двигателе и степени защиты от окружающей среды. Рассмотрим особенности конструкции стартеров на конкретных примерах. Стартер автомобиля состоит (рис. 1) из корпуса 18 с полюсами 3 и катушками обмотки возбуждения 2, якоря 19 с коллектором 27, пакетом пластин и об­моткой якоря 7, механизма привода с электромагнитным тяговым реле, муфтой свободного хода 15 и шестерней 14, крышек 12 (со стороны привода) и 22 (со стороны коллектора), щеточного узла со щеткодержателями, щетками и щеточными пружинами.
Корпус 18 стартера автомобиля является частью магнитной системы электродвигателя, служит несущей конструкцией для крышек, воспринимает вращающий момент и передает его элементам крепления стартера на двигателе.
Корпус выполняют из цельнотянутой трубы или стальной полосы с последующей сваркой стыка. К корпусу винтами прикреплены полюсы - на стартере их четыре. Полюсы состоят из магнитопровода и полюсных наконечников. Для обеспечения постоянного воздушно­го зазора по окружности между полюсами и якорем полюсы растачивают.



Рис. 1. Стартер:

1 - обмотка якоря; 2- обмотка возбуждения; 3 - полюс; 4 - контакты тягового реле; 5 - контакт замыкания добавочного резистора; 6 - обмотки тягового реле; 7 - якорь тягового реле; 8 - регулировочный винт-тяга; 9 - защитный кожух; 10 - рычаг; 11 - винт регулировки хода шестерни; 12 - крышка со стороны привода; 13 - упорное кольцо; 14 - шестерня; 15 - муфта свободного хода; 16 - пружина; 17 - поводковая муфта; 18 - кор­пус; 19 - якорь; 20 - защитная лента; 21 - коллектор; 22 – крышка со стороны коллектора.

 

На полюсах располагаются катушки обмотки возбуждения. Число катушек равно числу полюсов. Для намотки последовательной обмотки возбуждения используют неизолированный медный провод прямоугольного сечения. Между витками проложен электроизоляционный картон толщиной 0,2...0,4 мм. В стартерах со смешанным возбуждением для намотки катушек параллельной обмотки возбуждения применяют круглый изолированный провод с эмалевой изоляцией. Внешняя изоляция представляет собой хлопчатобумажную ленту, которую для повышения электрической и механической прочности пропитывают лаком.
Стартеры автомобильные с катушками с последовательным возбуждением могут быть соединены последовательно, попарнопараллельно или параллельно. Катушки параллельной обмотки в стартерах смешанного возбуждения обычно соединяют последовательно. Между собой катушки соединены контактной сваркой или заклепками с последующей пайкой. Для экономии меди и уменьшения массы стартеров иногда применяются алюминиевые провода. В этом случае катушки соединяют методом холодной сварки.
Якорь 19 стартера имеет шихтованный сердечник в виде пакета стальных пластин толщиной 1,0...1,2 мм, что уменьшает потери на вихревые токи. Крайние пластины пакета из электроизоляционного картона предохраняют от повреждения изоляцию лобовых частей обмотки якоря. В электродвигателях стартеров автомобиля применяют простые волновые и петлевые обмотки с одно- и двухвитковыми секциями.

Большее распространение в автомобильных стартерах получили волновые обмотки, обладающие рядом преимуществ по сравнению с петлевыми - лучшие массогабаритные показатели, отсутствие специальных уравнительных соединений. Лобовые части обмотки якоря укрепляют бандажами из нескольких витков проволоки, хлопчатобумажного шнура или стекловолокнистого материала, пропитанного синтетическими смолами. Лобовые части секций изолируют одну от другой электроизоляционным картоном или полимерными трубами. Концы секций обмотки якоря укладывают в прорези петушков коллекторных ламелей, чеканят и соединяют с коллекторными ламелями пайкой.
Коллектор 21, составленный из медных ламелей, является наиболее ответственным узлом электродвигателя. Коллекторы подвергаются значительным электрическим, тепловым и механическим нагрузкам. В стартерах применяют сборные цилиндрические коллекторы на металлической втулке (стартеры большой мощности), а также цилиндрические и торцовые с пластмассовым корпусом.
Сборный коллектор состоит из отдельных пластин твердотянутой профильной меди и изолирующих прокладок из миканита, слюдинита или слюдопласта толщиной 0,4...0,9 мм. Цилиндрические коллекторы с пластмассовым корпусом набирают в виде пакета медных пластин и в специальной форме запрессовывают в пластмассу. Использование в качестве формирующего элемента пластмассы повышает монолитность, прочность коллектора и позволяет автоматизировать процесс его изготовления. Пластмассовый корпус изолирует коллекторные ламели и воспринимает нагрузки.
Рабочая поверхность торцового коллектора находится в плоскости, перпендикулярной оси вращения якоря (рис. 2). При этом снижается расход меди, уменьшается длина стартера, повышается уровень механизации и автоматизации производства коллекторов. Пакет якоря и коллектор напрессовывают на вал, вращающийся в двух или трех опорах с подшипниками из порошкового материала или бронзографитными. Подшипники скольжения расположены в крышках и промежуточной опоре. Смазочный материал в подшипники закладывается в процессе производства и добавляется при обслуживании стартеров в эксплуатации. В стартерах большой мощности подшипники имеют масленки с резервуарами и смазочными фильцами. Промежуточную опору обычно устанавливают в стартерах с диаметром корпуса 115 мм и более. При ее применении уменьшаются прогиб вала и износ подшипников. Промежуточные опоры в виде диска из чугуна, стали или алюминиевого сплава зажимают между корпусом и передней крышкой и крепят к передней крышке.
Непосредственно к коллекторной крышке или к траверсе заклепками и винтами прикреплены щеткодержатели 4. Щеткодержатели изолированных щеток отделены от  крышек прокладками из текстолита или другого изоляционного материала. Щеткодержатели обеспечивают правильное расположение и необходимое усилие прижима щеток к рабочей поверхности коллектора. Надежность электрического контакта между щеткой и коллектором в значительной мере определяется усилием, с которым щетка прижимается к коллектору пружиной 2, и изменением этого усилия в процессе изнашивания щетки и уменьшения ее высоты. Начальное давление пружин на щетке находится в пределах 30...130 кПа. Применяют спиральные пружины из ленточной стали или витые цилиндрические пружины.

 

Рис. 2. Электростартер с торцовым коллектором:

1 - вал якоря; 2 и 3 - соответственно упорное и замковое кольца; 4 - шестерня; 5 - рычаг привода; 6 - тяга реле; 7 - уплотнительная заглушка; 8 - обмотка возбуждения; 9, 10, 13 и 15 - соответственно якорь, корпус, «сердечник и крышка тягового реле; 11 и 12 - соответственно удерживающая и втягивающая обмотки; 14 - подвижный контакт; 16 - контактныеболты; 17 - бандаж лобовой части обмотки якоря; 18 - обмотка якоря;  19 - защитный кожух; 20 - щетка; 21 - вкладыш подшипника; 22 - торцовый коллектор; 23 и 27- соответственно коллекторная и передняя крышки; 24 - якорь электродвигателя; 25 - корпус; 26 - поводковая муфта; 28 - роликовая муфта свободного хода.

Щетки торцовых коллекторов (см. рис. 2.) размещены в пластмассовой или металлической траверсе и прижаты к рабочей поверхности коллектора витыми цилиндрическими пружинами, что позволяет сохранить постоянство прижимных усилий в течение длительного срока службы. В стартерах применяют меднографитовые щетки с добавлением олова и свинца, причем содержание графита в щетках больше у мощных стартеров и у стартеров с тя­желыми условиями коммутации.
Конструкция кожуха (приводной крышки) 9 (см. рис. 1) зависит от материала, типа механизма привода, способа крепления стартера на двигателе и тягового реле на стартере. Шестерня привода стартера может быть установлена между опорами под приводной крышкой или консольно за ее пределами. Консольное расположение шестерни характерно для стартеров с инерционным приводом, с перемещающимся якорем, с тяговым реле, встроенным в переднюю крышку соосно приводу или размещенным в коллекторной крышке. Разработаны конструкции стартеров с одной опорой в коллекторной крышке (см. рис. 2.2). Другая опора вала со стороны привода расположена в картере маховика двигателя.
Стартеры, предназначенные для тяжелых условий работы на большегрузных автомобилях и тракторах, отличаются большой степенью герметизации. Например, в стартере СТ142 для дизелей (рис. 2.14) герметизация обеспечивается установкой в местах разъема резиновых колец 12 и 77, применением пластмассовых


Рис. 3. Стартер для дизелей:
1 - болт траверсы; 2 - пружина щеткодержателя; 3 - металлическая втулка коллектора; 4 - нажимное металлическое кольцо; 5 - изоляционный корпус коллектора; 6- войлочный фильц; 7 - радиальный щеткодержа­тель; 8 - траверса; 9 и 28 - болты крепления соответственно коллектор­ной и приводной крышек; 10 и 20 - соответственно коллекторная и при­водная крышки; 11 -щетка; 12\л 17- резиновые уплотнительные кольца; 13 -корпус; 74-полюс; 75 и 18- соответственно шток и якорь тягового реле; 16-тяговое реле; 19-сильфон; 21 –рычаг включения привода; 22- шестерня привода; 23 -упорная шайба; 24 - вкладыш подшипника; 25-храповичная муфта свободного хода; 26 - промежуточная опора; 27- манжета; 29-вкладыш промежуточного подшипника; 30 якорь электродвигателя; 31 -коллектор

 

Автомобильные стартеры, имея идентичные по конструкции электродвигатели, могут существенно отличаться по конструкции приводных механизмов. По типу и принципу работы механизма привода можно выделить следующие основные группы стартеров:
- с принудительным механическим или электромеханическим перемещением шестерни привода;
- с принудительным электромеханическим вводом шестерни в зацепление с венцом маховика и самовыключением шестерни после пуска двигателя;
-  с инерционным перемещением шестерни;
-  с электромагнитным вводом шестерни в зацепление за счет перемещения якоря.

На отечественных автомобилях применяются стартеры с принудительным вводом шестерни в зацепление. Для предотвращения разноса якоря после пуска ДВС на валу стартера устанавливают муфту свободного хода, которая передает усилие от якоря к шестерне и проскальзывает, когда шестерня вращается маховиком двигателя.
Надежность работы муфт свободного хода снижается с повышением мощности стартера. Поэтому в стартерах большой мощности устанавливают комбинированные приводные механизмы с принудительным вводом шестерни в зацепление и ее автоматическим инерционным выключением. Преимуществами инерционных приводов являются относительная простота конструкции, малые размеры и стоимость. Однако включение шестерни сопровождается значи­тельными ударными нагрузками, что ограничивает область их при­менения стартерами мощностью до 1 кВт.
Зацепление шестерни при осевом перемещении якоря за счет магнитодвижущей силы полюсов стартерного электродвигателя используется за рубежом на стартерах мощностью 3...5 кВт. Стартеры обладают компактной конструкцией, хорошо компонуются на двигателях, но имеют повышенный расход меди и работают ненадежно при стоянке автомобилей на уклонах.
Приводные механизмы электростартеров с принудительным перемещением шестерни имеют роликовые, фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу ДВС во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска. Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых заклинивание роликов происходит благодаря возникновению сил трения в сопряженных деталях.
На рис. 4. представлен в упрощенном виде принцип работы роликовой муфты. При включении стартера крутящий момент от наружной ведущей обоймы передается роликами на внутреннюю обойму при заклинивании роликов. Как только двигатель будет запущен (сот < оог) наружная обойма станет ведомой (ведущим будет зубчатый венец маховика), ролики расклиниваются и муфта начинает пробуксовывать.
Динамические характеристики муфты определяются комплексом сил, действующих на ролик в процессе прокручивания вала ДВС и после его запуска.

 

Рис. 4. Схема действия сил в роликовой муфте свободного.

 

 

 

Такими силами являются: Рц - центробежная сила инерции, резко возрас­тающая после пуска двигателя и имеющая нормальную Рн и тангенциальную Рт составляющие; сила тяжести ролика тg\ нормальная реакция в месте контакта с внутренней обоймой N; усилие прижимной пружины Рпр, сила трения на поверхности соприкосновения ролика с обоймой FTp. Рабочие поверхности наружной обоймы выполняются по сложной кривой (спираль Архимеда или логарифмическая кривая).
Одним из основных параметров муфты является угол заклинивания а. В зависимости от а изменяются нагрузки, действующие на обоймы привода, и тангенциальная сила инерции Рт, действующая на прижимное устройство в момент работы роликовой муфты в режиме обгона. В стартерных приводах угол заклинивания лежит в пределах 4...6°.
Для обеспечения надежного контакта роликов с рабочими поверхностями применяют прижимные устройства, по типу конструкции которых роликовые муфты подразделяются на плунжерные и бесплунжерные.
В плунжерных роликовых муфтах (рис. 5.) при увеличении частоты вращения (в режиме обгона) действующая на ролики 1 центробежная сила возрастает, а момент трения между роликами и ведомой обоймой 14 уменьшается. Под действием центробежной силы ролики, преодолевая сопротивление прижимных пружин 3, перемещаются в широкую часть клиновидного пространства. При этом муфта проскальзывает и предохраняет стартер от разноса. Однако при неустойчивом пуске, когда возникают пропуски воспламенения в отдельных цилиндрах ДВС, создаются значительные ускорения. При этом действующие на ролики центробежные силы достигают больших значений и могут превысить создаваемые прижимными пружинами усилия, что вызывает динамическую пробуксовку муфты.
В муфтах свободного хода с бесплунжерными устройствами заклинивание роликов происходит за счет перемещения толкателей (рис. 2.17) или сепараторов с пазами, в которых размещены ролики.

2  3                                             6 7 8 9 10 11 12   13    14      15 16 17 18 


Рис. 5. Привод стартера с плунжерной роликовой муфтой свободного хода:
1 - ролики; 2 - плунжер; 3 и 11 - соответственно прижимная и буферная пружины; 4 - упоры пружины; 5и 14 -соответственно наружная ведущая и ведомая обоймы, 6 и 10 - замковые кольца; 7 - чашка; 8 - пружина; 9 - втулка отвода; 12 - шлицевая направляющая втулка; 13 - центрирующее
кольцо; 75-металлическая пластина, 16 - кожух муфты; 17- шестерня привода; 18- вкладыш

В первом случае витые цилиндрические пружины 3 одним концом упираются в выступ толкателей 2, а другим - в отогнутые лепестки пластины 13, соединенные с наружной обоймой, закрывающей ее рабочую полость. В муфтах с групповыми прижимными устройствами используется одновитковая пружина кручения, закрепляемая одним концом на сепараторе, а другим на наружной ведущей обойме. Сепараторная конструкция прижимного устройства обеспечивает надежную фиксацию роликов и равномерное распределение нагрузки на них. Благодаря отсутствию отверстий под плунжеры в бесплунжерных муфтах свободного хода повышается прочность обоймы.
Общее взаимодействие элементов конструкции стартера (см. рис. 1/) при запуске двигателя следующее.
Якорь 7 тягового реле, втягиваясь магнитным полем обмоток 6, перемещает рычаг 10 и связанную с ним муфту 17 привода. При этом шестерня 14 стартера входит в зацепление с венцом маховика дви­гателя. Подвижной контакт тягового реле замыкает цепь батарея -стартер, и якорь последнего начинает вращаться. Если шестерня не вошла в зацепление с венцом маховика (так называемое «утыкание» шестерни стартера в зубцы венца маховика), то рычаг 10 будет про­должать перемещаться, сжимая пружину 16. Как только якорь начнет вращаться, шестерня повернется и под действием пружины 16 ее зубья войдут во впадины между зубьями венца маховика.

Рис 6. Привод стартера с бесплунжерной муфтой свободного хода:
1 - ролик; 2 - Г- образный толкатель, 3 и 9- соответственно прижимная и буферная пружины, 4 и 8- замковые кольца; 5 - чашка; 6- пружина; 7 - втулка отвода; 10 -шлицевая направляющая втулка; 11 и 15 - соответст­венно центрирующее и войлочное кольца; 12 и 77-соответственно наружная ведущая и ведомая обоймы; 13- пластина с отогнутыми лепестками; 14 - специальная шайба, 16- кожух муфты; 18 - шестерня; 19-вкладыш В случае если шестерня привода не вышла из зацепления с венцом маховика после пуска двигателя, срабатывает муфта свободного хода 15 и вращение от двигателя не передается на якорь, что предохраняет его от разноса.


В стартерах большой мощности (более 5 кВт) роликовые муфты работают ненадежно, поэтому для них разработаны специальные конструкции приводов. Двигатели КамАЗ и некоторые другие дизели оснащены стартером, в приводном механизме которого применяется храповая муфта свободного хода (рис. 7.). Детали привода расположены на направляющей втулке 12, имеющей прямые внутренние шлицы и многозаходную ленточную наружную резьбу. Направляющая втулка может перемещаться вместе с приводом по шлицам вала стартера. На наружной резьбе втулки 12 расположена ведущая половина 8 храповой муфты. Ведомая половина 6 выполнена как одно целое с шестерней и может свободно вращаться на втулке 12 в бронзографитовых подшипниках. Торцы половин храповой муфты снабжены зубцами и прижимаются один к другому пружиной 10. Ведомая половина 6 заперта в корпусе 11 замковым кольцом 5. Замковое кольцо 15 удерживает корпус 11 от перемещения вдоль втулки 12. Для амортизации ударов при включении стартера пружина 10 упирается в корпус 11 через стальную шайбу 13 и резиновое кольцо 14. Для предотвращения изнашивания двигатель запущен, а стартер еще не выключен, предусмотрен механизм блокировки. Внутри ведомой половины 6 муфты находятся три пластмассовых сухаря 3 с радиальными отверстиями, в которые входят направляющие штифты 4. Наружная поверхность сухарей имеет коническую фаску, прилегающую к выточке стальной конической втулки 7, установленной в ведущей половине 8 муфты. Пружина 10 через втулку 7 прижимает сухари 3 к направляющей втулке 12. При передаче вращающего момента от вала стартера к венцу маховика возникает осевое усилие, прижимающее ведущую и ведомую половины храповой муфты. Как только ДВС будет пущен, произойдет пробуксовка храповой муфты, так как изменится направление передаваемого усилия на шестерне стартера (при пуске - от шестерни к венцу, а при работающем двигателе - от венца к шестерне). Во время пробуксовки ведущая половина 8 отодвигается от ведомой б, сжимая пружину 10. Вместе с ведущей половиной 8 отодвигается втулка 7, освобождая сухари 3, которые под действием центробежных сил перемещаются вдоль штифтов 4 и блокируют муфту в расцепленном состоянии. После выключения стартера ведущая половина 8 под действием пружины 10 прижмется к ведомой 6 и втулка /установит сухари 3 в исходное положение.

Рис. 7. Механизм привода с храповой муфтой свободного хода:

1 - вкладыш подшипника; 2- шестерня; 3-сегмент (сухарик); 4 - направ­ляющий штифт; 5 и 15 - замковые кольца; 6 и 8- соответственно ведомая и ведущая половины храповой муфты; 7 и 12 - соответственно коническая и шлицевая направляющая втулки; 9 и 13 - шайбы; 10 - пружина; 11 - корпус; 14 - буферное резиновое кольцо.При упоре шестерни стартера в зубья венца маховика корпус 11 привода под действием усилия тягового реле вместе с направляющей втулкой 12 продолжает перемещаться вдоль шлицев вала стартера, сжимая пружину 10. При этом ленточная резьба втулки 12 заставляет поворачиваться ведущую половину 8 и шестерню стар­тера (до 30°), что обеспечивает ее зацепление с венцом маховика.

 

Рис. 8. Механизм привода стартера:

1- вал якоря; 2 - стакан; 3 - рычаг; 4 - буферная пружина; 5 - шайба; 6 - гайка; 7 - пружина; 8 - шестерня, 9 - упорное кольцо; 10 - спиральный паз,

 

 

 

На рис. 8. изображен механизм привода стартера дизельных двигателей. На специальных шлицах вала якоря 1 установлены гайка 6 и шестерня 8. Гайка двумя внешними выступами входит в продольные пазы этой шестерни. Между гайками и хвостовиком шестерни помещена пружина 7. На вал якоря свободно посажен стакан 2 со спиральным пазом 10. На опорной втулке стакана размещены буферная пружина 4 и шайба 5. Ход шестерни на валу ограничивает упорное кольцо 9. При включении стартера тяговое реле, действуя на рычаг 3, перемещает стакан 2. При этом опорная втулка нажимает на ведущую гайку 6 и продвигает ее вместе с шестерней до упорного кольца 9. Если зубья шестерни упираются в зубья венца маховика, то ведущая гайка 6 сжимает пружину 7 и поворачивает шестерню 8, так как шлицевые пазы в шестерне 8 шире шлицев вала якоря 1.
В первый момент пуска двигателя стакан 2 поворачивается благодаря трению и по спиральному пазу 10 отводится назад в исходное положение, освобождая место для отхода шестерни. Как только двигатель будет пущен, венец маховика начнет вращать шестерню стартера, и она, перемещаясь по спиральным шлицам, отойдет в первоначальное положение.
Абсолютное большинство современных автомобильных старте­ров имеет принудительное электромагнитное включение и выключение шестерни. Приводные механизмы этих стартеров имеют дис­танционно управляемые тяговые реле. Электромагнитные тяговые реле отличаются по конструкции и способу крепления на стартере. Большинство отечественных стартеров имеют двухобмоточные реле, устанавливаемые на приливе приводной крышки.
Двухобмоточное тяговое реле стартёра (см. рис. 1) имеет две обмотки: втягивающую и намотанную на нее удерживающую, кото­рые расположены на латунной втулке. В ней свободно перемещается стальной якорь 7. Удерживающая обмотка рассчитана только на удержание якоря 7 в притянутом состоянии. Она наматывается проводом меньшего сечения и имеет самостоятельный вывод на массу. Удерживающая обмотка работает длительное время и больше нагревается. Втягивающая обмотка подключена параллельно силовым контактам 4 реле. При включении реле она совместно с удерживающей обмоткой создает необходимую силу притяжения. При замыкании силовых контактов реле втягивающая обмотка отключается. Тяговое реле связано рычагом 10 с приводным механизмом. Два пальца нижней разветвленной части рычага соединены с поводковой муфтой 17.
На стартерах малой мощности могут применяться однообмоточные тяговые реле. Существуют конструкции стартеров, у которых тяговые реле расположены соосно с валом стартера либо в крышке со стороны привода, либо в крышке со стороны коллектора.                                                                                                                                                    ,
Стартер с редуктором
Параметром, определяющим рациональное согласование мощностной характеристики электропускового устройства с пусковыми характеристиками ДВС, является передаточное число Iдс привода от стартера к двигателю. Этот параметр оказывает влияние на угол наклона механической характеристики стартерного электродвига­теля, приведенной к коленчатому валу ДВС. Для каждого двигателя и заданных условий пуска существуют оптимальные передаточные числа, при которых наилучшим образом используются мощностные характеристики пускового устройства. Однако при безредукторной передаче передаточное число Iдс может быть не более 16, что ограничивается условиями механической прочности ведущей шестерни стартера.
С другой стороны, увеличение передаточного числа позволяет уменьшить размеры и соответственно массу электродвигателя стартера, так как эти параметры изменяются обратно пропорцио­нально частоте вращения вала. Последние годы одним из главных направлений совершенствования систем пуска является уменьше­ние массы активных материалов, стоимость которых составляет около 50% себестоимости стартера. При этом, помимо использования таких известных методов, как замена медных проводов обмоток на более легкие алюминиевые и уменьшение габаритов за счет применения изоляции более высокого класса нагревостойкости, все более широко стали применяться высокооборотные малогабаритные стартерные электродвигатели с встроенным редуктором.
В конструкциях стартеров с редуктором между ротором электродвигателя и шестерней, сидящей на выходном валу стартера, встраивается редуктор, понижающий частоту вращения в 3...4 раза. При этом частота вращения вала электродвигателя может быть повышена до 15 000 ... 20 000 мин-1 в режиме холостого хода. Блок электродвигателя представляет собой механизм с малыми размерами, высокой частотой вращения и низким моментом.
Конструктивно редукторы могут быть выполнены простыми рядными с внешним или внутренним зацеплением (рис. 9.), а также планетарными. Наиболее перспективным является так называемый планетарный редуктор Джемса (рис. 10.), применяемый для передачи движения с небольшими замедлениями (5...7). Его достоинст­вами является симметричность передаваемых усилий, компактность и высокий КПД, превосходящий КПД соответствующих простых редукторов (см., например, рис. 2.22). Передаточное число такого редуктора:Ip=1+Zц/Zв,где zu и zB - число зубьев соответственно центрального неподвиж­ного колеса 13 (см. рис. 2.23) и ведущей шестерни 10.

 

Рис. 9. Стартер с редуктором внутреннего зацепления

:
1 - передняя крышка; 2- приводной рычаг, 3 и 4 -соответственно якорь и обмотки тягового реле; 5 - контактный диск; 6- обмотка возбуждения; 7- щетка; 8 - подшипник; 9 - коллектор; 10- якорь электродвигателя; 11 - ведущая шестерня редуктора; 12- ведомое зубчатое колесо с внут­ренним зацеплением; 13- роликовая муфта свободного хода; 74-шестерня привода; 75-вал привода

 

 

 

 

Стартер применяется на легковых автомобилях с бензиновыми двигателями с объемом до 5 литров или дизельными с объемом до 1,6 литра. Стартер имеет меньшие размеры и на 40% меньшую массу чем традиционные стартеры, спроектированные для тех же целей и обеспечивает эквивалентную или большую мощность.


Рис. 10. Стартер Bosch:

1 - крышка со стороны привода; 2 - шестерня привода; 3 - тяговое реле;
4 - клемма; 5 - крышка со стороны коллектора; 6 - щеткодержатель с графитными щетками; 7- коллектор; 8 - якорь; 9 - постоянные магниты; 10 - статор (корпус); 11 - планетарный редуктор; 12 - приводной рычаг; 13 - механизм привода.

 

 

 

На рис. 10. представлен стартер Bosch со встро­енным редуктором и возбуждением от постоянных магнитов, а на рис. 11. отдельно его якорь с планетарным механизмом.
Особенностями конструкций стартеров с редукторами являются: малые размеры и масса электродвигателя; уменьшение нагрузки на аккумуляторную батарею при пуске ДВС в связи с применением электродвигателя с малым моментом (малые разрядные токи); повышение возможностей пуска двигателя при низких температурах; снижение выходной мощности при малых нагрузках; более тяжелые условия работы муфты свободного хода, повышенный шум из-за высокой частоты вращения вала электродвигателя и наличия редуктора; тяжелые условия работы щеточно-коллекторного узла электродвигателя в связи с большой скоростью коммутации.
Применение стартеров с редукторами потребовало в значительной степени изменить технологию их изготовления. В частности, для увеличения механической прочности быстровращающихся частей стали применять более прочную изоляцию обмоток якоря, заменять лайку соединений в главных цепях сваркой, точно баланси­ровать вращающиеся части и т. п.

Рис. 11. Якорь и планетарный редуктор стартера Bosch:

1 - вал водила планетарной передачи с винтовыми шлицами; 2 - зубчатое колесо с внутренним зацеплением; 3 - планетарные шестерни (сателли­ты); 4 - солнечное колесо на валу якоря; 5 - якорь; 6 - коллектор